إدخال مسألة...
الجبر الخطي الأمثلة
خطوة 1
خطوة 1.1
أعِد كتابة بالصيغة .
خطوة 1.2
لنفترض أن . استبدِل بجميع حالات حدوث .
خطوة 1.3
حلّل إلى عوامل باستخدام طريقة AC.
خطوة 1.3.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 1.3.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 1.4
استبدِل كافة حالات حدوث بـ .
خطوة 2
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 3
خطوة 3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.2
أوجِد قيمة في .
خطوة 3.2.1
أضف إلى كلا المتعادلين.
خطوة 3.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 3.2.3
أي جذر لـ هو .
خطوة 3.2.4
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 3.2.4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 3.2.4.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 3.2.4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 4
خطوة 4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.2
أوجِد قيمة في .
خطوة 4.2.1
اطرح من كلا المتعادلين.
خطوة 4.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 4.2.3
بسّط .
خطوة 4.2.3.1
أعِد كتابة بالصيغة .
خطوة 4.2.3.1.1
أخرِج العامل من .
خطوة 4.2.3.1.2
أعِد كتابة بالصيغة .
خطوة 4.2.3.2
أخرِج الحدود من تحت الجذر.
خطوة 4.2.4
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 4.2.4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 4.2.4.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 4.2.4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 5
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 6
النطاق هو مجموعة جميع قيم الصحيحة.
خطوة 7